Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The AAL-PIP collection of magnetometers is part of an autonomous adaptive low-power instrument platform (AAL-PIP) chain of six stations that has been established on East Antarctic Plateau along the 40 deg geomagnetic meridian, to investigate interhemispheric geomagnetically conjugate current systems, waves, and other space weather phenomena in Polar Regions. These six stations, PG0 to PG5, which run autonomously with solar power and two-way satellite communication, are designated at the geomagnetically conjugate locations of the West Greenland geomagnetic chain covering magnetic latitudes from 70 deg to 80 deg.more » « less
-
Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
-
Vishniac, E; Muench, A (Ed.)Models for space weather forecasting will never be complete/valid without accounting for inter-hemispheric asymmetries in Earth’s magnetosphere, ionosphere and thermosphere. This whitepaper is a strategic vision for understanding these asymmetries from a global perspective of geospace research and space weather monitoring, including current states, future challenges, and potential solutions.more » « less
-
null (Ed.)Abstract Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). However, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregularities for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observation technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.more » « less
-
The Super Dual Auroral Radar Network (SuperDARN) is an international network of high frequency coherent scatter radars that are used for monitoring the electrodynamics of the Earth’s upper atmosphere at middle, high, and polar latitudes in both hemispheres. pyDARN is an open-source Python-based library developed specifically for visualizing SuperDARN radar data products. It provides various plotting functions of different types of SuperDARN data, including time series plot, range-time parameter plot, fields of view, full scan, and global convection map plots. In this paper, we review the different types of SuperDARN data products, pyDARN’s development history and goals, the current implementation of pyDARN, and various plotting and analysis functionalities. We also discuss applications of pyDARN, how it can be combined with other existing Python software for scientific analysis, challenges for pyDARN development and future plans. Examples showing how to read, visualize, and interpret different SuperDARN data products using pyDARN are provided as a Jupyter notebook.more » « less
-
null (Ed.)Abstract. Instrument platforms the world over often rely on GPS or similar satellite constellations for accurate timekeeping and synchronization. This reliance can create problems when the timekeeping counter aboard a satellite overflows and begins a new epoch. Due to the rarity of these events (19.6 years for GPS), software designers may be unaware of such circumstance or may choose to ignore it for development complexity considerations. Although it is impossible to predict every fault that may occur in a complicated system, there are a few “best practices” that can allow for graceful fault recovery and restorative action. These guiding principles are especially pertinent for instrument platforms operating in space or in remote locations like Antarctica, where restorative maintenance is both difficult and expensive. In this work, we describe how these principles apply to a communications failure on autonomous adaptive low-power instrument platforms (AAL-PIP) deployed in Antarctica. In particular, we describe how code execution patterns were subtly altered after the GPS week number rollover of April 2019, how this led to Iridium satellite communications and data collection failures, and how communications and data collection were ultimately restored. Finally, we offer some core tenets of instrument platform design as guidance for future development.more » « less
An official website of the United States government
