Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The AAL-PIP collection of magnetometers is part of an autonomous adaptive low-power instrument platform (AAL-PIP) chain of six stations that has been established on East Antarctic Plateau along the 40 deg geomagnetic meridian, to investigate interhemispheric geomagnetically conjugate current systems, waves, and other space weather phenomena in Polar Regions. These six stations, PG0 to PG5, which run autonomously with solar power and two-way satellite communication, are designated at the geomagnetically conjugate locations of the West Greenland geomagnetic chain covering magnetic latitudes from 70 deg to 80 deg.more » « less
-
Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
-
Vishniac, E; Muench, A (Ed.)Models for space weather forecasting will never be complete/valid without accounting for inter-hemispheric asymmetries in Earth’s magnetosphere, ionosphere and thermosphere. This whitepaper is a strategic vision for understanding these asymmetries from a global perspective of geospace research and space weather monitoring, including current states, future challenges, and potential solutions.more » « less
-
The Super Dual Auroral Radar Network (SuperDARN) is an international network of high frequency coherent scatter radars that are used for monitoring the electrodynamics of the Earth’s upper atmosphere at middle, high, and polar latitudes in both hemispheres. pyDARN is an open-source Python-based library developed specifically for visualizing SuperDARN radar data products. It provides various plotting functions of different types of SuperDARN data, including time series plot, range-time parameter plot, fields of view, full scan, and global convection map plots. In this paper, we review the different types of SuperDARN data products, pyDARN’s development history and goals, the current implementation of pyDARN, and various plotting and analysis functionalities. We also discuss applications of pyDARN, how it can be combined with other existing Python software for scientific analysis, challenges for pyDARN development and future plans. Examples showing how to read, visualize, and interpret different SuperDARN data products using pyDARN are provided as a Jupyter notebook.more » « less
-
null (Ed.)Abstract Ionospheric irregularities can adversely affect the performance of Global Navigation Satellite System (GNSS). However, this opens the possibility of using GNSS as an effective ionospheric remote sensing tool. Despite ionospheric monitoring has been undertaken for decades, these irregularities in multiple spatial and temporal scales are still not fully understood. This paper reviews Virginia Tech’s recent studies on multi-scale ionospheric irregularities using ground-based and space-based GNSS observations. First, the relevant background of ionospheric irregularities and their impact on GNSS signals is reviewed. Next, three topics of ground-based observations of ionospheric irregularities for which GNSS and other ground-based techniques are used simultaneously are reviewed. Both passive and active measurements in high-latitude regions are covered. Modelling and observations in mid-latitude regions are considered as well. Emphasis is placed on the increased capability of assessing the multi-scale nature of ionospheric irregularities using other traditional techniques (e.g., radar, magnetometer, high frequency receivers) as well as GNSS observations (e.g., Total-Electron-Content or TEC, scintillation). Besides ground-based observations, recent advances in GNSS space-based ionospheric measurements are briefly reviewed. Finally, a new space-based ionospheric observation technique using GNSS-based spacecraft formation flying and a differential TEC method is demonstrated using the newly developed Virginia Tech Formation Flying Testbed (VTFFTB). Based on multi-constellation multi-band GNSS, the VTFFTB has been developed into a hardware-in-the-loop simulation testbed with external high-fidelity global ionospheric model(s) for 3-satellite formation flying, which can potentially be used for new multi-scale ionospheric measurement mission design.more » « less
-
Abstract Nearly all studies of impulsive geomagnetic disturbances (GMDs, also known as magnetic perturbation events MPEs) that can produce dangerous geomagnetically induced currents (GICs) have used data from the northern hemisphere. In this study, we investigated GMD occurrences during the first 6 months of 2016 at four magnetically conjugate high latitude station pairs using data from the Greenland West Coast magnetometer chain and from Antarctic stations in the conjugate AAL‐PIP magnetometer chain. Events for statistical analysis and four case studies were selected from Greenland/AAL‐PIP data by detecting the presence of >6 nT/s derivatives of any component of the magnetic field at any of the station pairs. For case studies, these chains were supplemented by data from the BAS‐LPM chain in Antarctica as well as Pangnirtung and South Pole in order to extend longitudinal coverage to the west. Amplitude comparisons between hemispheres showed (a) a seasonal dependence (larger in the winter hemisphere), and (b) a dependence on the sign of theBycomponent of the interplanetary magnetic field (IMF): GMDs were larger in the north (south) when IMFBywas >0 (<0). A majority of events occurred nearly simultaneously (to within ±3 min) independent of the sign ofByas long as |By| ≤ 2 |Bz|. As has been found in earlier studies, IMFBzwas <0 prior to most events. When IMF data from Geotail, Themis B, and/or Themis C in the near‐Earth solar wind were used to supplement the time‐shifted OMNI IMF data, the consistency of these IMF orientations was improved.more » « less
-
Abstract Rapid changes of magnetic fields associated with nighttime magnetic perturbation events (MPEs) with amplitudes |ΔB| of hundreds of nT and 5–10 min duration can induce geomagnetically induced currents (GICs) that can harm technological systems. Here we present superposed epoch analyses of large nighttime MPEs (|dB/dt| ≥ 6 nT/s) observed during 2015 and 2017 at five stations in Arctic Canada ranging from 64.7° to 75.2° in corrected geomagnetic latitude (MLAT) as functions of the interplanetary magnetic field (IMF), solar wind dynamic pressure, density, and velocity, and the SML, SMU, and SYM/H geomagnetic activity indices. Analyses were produced for premidnight and postmidnight events and for three ranges of time after the most recent substorm onset: (a) 0–30 min, (b) 30–60 min, and (c) >60 min. Of the solar wind and IMF parameters studied, only the IMF Bz component showed any consistent temporal variations prior to MPEs: a 1–2 h wide 1–3 nT negative minimum at all stations beginning ∼30–80 min before premidnight MPEs, and minima that were less consistent but often deeper before postmidnight MPEs. Median, 25th, and 75th percentile SuperMAG auroral indices SML (SMU) showed drops (rises) before pre‐ and post‐midnight type A MPEs, but most of the MPEs in categories B and C did not coincide with large‐scale peaks in ionospheric electrojets. Median SYM/H indices were flat near −30 nT for premidnight events and showed no consistent temporal association with any MPE events. More disturbed values of IMF Bz, Psw, Nsw, SML, SMU, and SYM/H appeared postmidnight than premidnight.more » « less
-
Abstract Nearly all studies of impulsive magnetic perturbation events (MPEs) with large magnetic field variability (dB/dt) that can produce dangerous geomagnetically induced currents (GICs) have used data from the Northern Hemisphere. Here we present details of four large‐amplitude MPE events (|ΔBx| > 900 nT and |dB/dt| > 10 nT/s in at least one component) observed between 2015 and 2018 in conjugate high‐latitude regions (65–80° corrected geomagnetic latitude), using magnetometer data from (1) Pangnirtung and Iqaluit in eastern Arctic Canada and the magnetically conjugate South Pole Station in Antarctica and (2) the Greenland West Coast Chain and two magnetically conjugate chains in Antarctica, AAL‐PIP and BAS LPM. From one to three different isolated MPEs localized in corrected geomagnetic latitude were observed during three premidnight events; many were simultaneous within 3 min in both hemispheres. Their conjugate latitudinal amplitude profiles, however, matched qualitatively at best. During an extended postmidnight interval, which we associate with an interval of omega bands, multiple highly localized MPEs occurred independently in time at each station in both hemispheres. These nighttime MPEs occurred under a wide range of geomagnetic conditions, but common to each was a negative interplanetary magnetic fieldBzthat exhibited at least a modest increase at or near the time of the event. A comparison of perturbation amplitudes to modeled ionospheric conductances in conjugate hemispheres clearly favored a current generator model over a voltage generator model for three of the four events; neither model provided a good fit for the premidnight event that occurred near vernal equinox.more » « less
An official website of the United States government
